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• Technology combination problem is formulated and proven NP-hard.

• The proposed heuristic algorithm can decrease the compliance cost by 14.1%

• The commonly used method overvalues the effectiveness of mass reduction technology.

• Conventional technologies are more cost-effective to meet China’s 2020 regulation.
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A B S T R A C T

The vehicle fuel economy standards have been implemented worldwide. However, it is quite difficult for the
automakers to secure an optimal portfolio of fuel-efficient technologies which complies with these strengthened
standards and minimizes the overall cost at the same time. In this paper, a genetic-algorithm-based heuristic
method is proposed for technological strategy planning. In particular, a case study of the Corporate Average Fuel
Economy standards in China is presented. Moreover, the mathematical model is constructed with the con-
siderations of the technology cost, effect of reducing fuel consumption and technology physical weight. Problem
complexity is analyzed and proven NP-hard. Moreover, a comparison analysis of performance is carried out
between the elaborated genetic algorithm and the greedy algorithm that is currently used by most automakers to
determine the technological strategies in China. The results imply that genetic algorithm outperforms the
common method because it provides more economical and reasonable strategies. In addition, the incremental
cost under the greedy algorithm is 16.4% higher than that under genetic algorithm. Due to the counteractive
effect under the weight-based standards in China, the mass reduction technologies should be given lower
priorities compared with current strategies. To satisfy the standards by 2020, automakers should implement
more conventional engine and transmission technologies instead of the hybrid electric vehicle technologies. It is
recommended that automakers should develop heuristic algorithms to make strategic decisions more reasonably.

1. Introduction

Since the Corporate Average Fuel Economy (CAFE) was first es-
tablished in the United States in 1970s, the standards to improve the

vehicle fuel economy have been spreading worldwide. Especially in the
past decade, 9 countries and regions have initially issued or updated
their fuel economy standards. Table 1 presents the fuel economy targets
and standards structures in the main vehicle markets [1]. As the fuel
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economy targets are getting more stringent, technology strategy sa-
tisfying the standards will become the main subject in automobile in-
dustry. It should be noted that China is the main contributor in the
growing vehicle market. In particular, the automotive industry has been
developed dramatically in China over the past 15 years. By the end of
2015, the vehicle stock has increased tenfold to 172.2 million [2]. Hao
et al. estimated that by 2050, the vehicle population would reach 606.7
million [3]. Subsequently, the on-road vehicles have become the major
CO2 emitters and oil consumers as the result of the booming automotive
industry.

China has announced four phases of fuel economy standards con-
cerning the light-duty vehicles. In particular, the Corporate Average
Fuel Consumption (CAFC) system has been established since Phase III,
which requires Original Equipment Manufacturers (OEM) to meet the
fleet average fuel consumption rate (FCR) targets. During the past
9 years after the release of the Phase I regulation, a 14.7% national
fleet-wide fuel economy improvement has been achieved [4,5]. How-
ever, the strengthening CAFC regulation at the current phase requires
OEMs in China to improve the fleet FCR by 4.5∼ 9.1% annually, as
shown in Fig. 1. Therefore, the technological strategy making is of vital
importance to comply with the standards. An OEM needs to optimally
select several sets of fuel-efficient technologies to its assortment.

2. Literature review

Two strategies for regulation compliance have been widely ex-
plored. One strategy is to measure the technology improvements and
compromise the trade-offs of vehicle attributes, which mostly includes
fuel economy, acceleration time and size. Lutsey and Sperling [6] as-
sessed the standards in terms of technology improvements. Luk, et al.
carried out the simulation of tradeoffs among vehicle price,

performance and interior volume to meet the 2025 fuel economy target
[7]. By measuring the vehicle potential fuel economy improvement
with the consideration of vehicle attribute trade-offs, the difficulty
complying with next phase standard could be quantified [8]. Another
strategy is to evaluate the promising and advanced technology road-
maps. Some studies assessed the potential of improving fleet-wide ve-
hicle fuel economy by setting various scenarios with different policy
instruments and penetration rates of the advanced technologies
[9,10,11]. Meanwhile, some studies analyzed the availability and po-
tential of fuel-efficient technologies as well as the technology roadmaps
to meet current standards and beyond [12,13]. Simmons et al. reviewed
the fuel economy technologies that were available in 2014 model year.
The results demonstrated OEMs with new insights into what the fuel-
efficient technology roadmap would be [14].

There were several methods used in the OEM’s decision-making
studies. In particular, these methods include the utility function in
conceptual and preliminary design stages [15], strategic decisions to
improve profitability according to the vehicle production volume in
flexible manufacturing system [16], design decisions with demand
distributions forecasted by exogenous variables [17], and cost-benefit
analysis to minimize the technology cost while complying with the
energy-saving requirement [18]. Moreover, the responses of OEMs are
examined under various regulation stages and scenarios in other stu-
dies. Oh et al. generated several strategies for the main OEMs to satisfy
the fuel economy regulations in Korea and made scenario analysis. They
found OEMs could only satisfy the standards by employing at least two
strategies [19]. Shiau et al. simulated OEMs’ responses under low,
moderate and high CAFE requirements respectively. They found that
improving the CAFE standards should cooperate with the increase of
the penalty for violation to guarantee the effectiveness of CAFE [20].
Besides the stringency of the standards, an appropriate regulatory lead-

Table 1
Fuel economy regulations and structures in main automobile markets.

Country or Region Target year Standard type Fleet target/
Measure

Converted fleet target (g/
km)

Structure Test cycle

EU 2021 CO2 95 gCO2/km 95 Weight-based corporate average NEDC
China 2020 Fuel consumption 4.9 L/100 km 117 Weight-class based per vehicle and corporate

average
NEDC

U.S. 2025 Fuel economy 56.2 mpg 97 Footprint-based corporate avg. U.S. combined
Canada 2025 GHG 56.2 mpg 97 Footprint-based corporate avg. U.S. combined
Japan 2020 Fuel economy 20.3 km/L 122 (exceeded by 2013) Weight-class based corporate average JC08
India 2021 CO2 113 g/km 113 Weight-based corporate average NEDC
South Korea 2020 Fuel economy 24.3 km/L 97 Weight-based corporate average U.S. combined

Fig. 1. China’s fleet-wide FCR and the future targets. Note: dotted line is estimated according to the phasing in of phase IV CAFC standards.
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time could also significantly affect the sustained technology deploy-
ment and investment plans [21].

It should be noted that the optimization method is employed in
some studies to analyze fuel-efficient technologies and the trend of
future technology roadmaps. However, the bulk of studies above did
not consider the standards compliance strategy as the combinatorial
optimization problem of technology and product. In general, the com-
binatorial optimization problems could be solved by heuristic algo-
rithms due to the computational complexity, In particular, the algo-
rithms include tabu search (TS), simulated annealing (SA), genetic
algorithm (GA), particle swarm optimization (PSO), artificial neural
network (ANN), artificial bee colony (ABC), etc. Conventionally, the
heuristic algorithms could effectively solve vehicle routing and sche-
duling problems [22]. Substantially, these algorithms are also em-
ployed in the vehicle development process and other corresponding
decision making problems nowadays. In the industrial sector, GA, PSO
and ANN are the most commonly used algorithms. In particular, GA and
PSO were mostly used in developing the vehicle control strategy, which
includes the gear shift [23,24] and energy management strategies [25],
and vehicle parameter design. For example, the light-weighting deci-
sion-makings consider the attribute trade-offs [26], and vehicle shape
optimization [27]. Furthermore, ANN and deep-learning methods could
also be implemented in the vehicle development and parameter opti-
mization. However, a large database for training or supervised learning
is usually required. In the academia sector, the mature and robust GA,
PSO and ANN are still the most commonly used methods. For example,
Chaos enhanced accelerated PSO was implemented in series HEV sizing
optimization [28], and ANN was used in designing Atkinson cycle of
conventional engines [29]. The other heuristic algorithms such as TS,
SA and ABC were mostly employed in the decision making of electric
vehicle charging and battery switching station distribution and con-
centration studies [30,31,32]. In theory, there exist some limitations
when a combinational optimization problem is solved using any heur-
istic algorithm. For instance, since the solution candidate of PSO is
commonly a vector of real numbers, it needs relaxation to solve a
problem whose solution are integers. Also as discussed above, ANN and
deep learning usually needs a large database to finish the training or
learning process as discussed above, where the data is collected from
markets or generated through simulation., to finish the training or
learning process. For a novel problem without much data for reference,
ANN could hardly be applied.

Despite vehicle development processes, GA is also widely used in
the decision making of technology evaluation and selection as well as
system design and product combination. However, few existing studies
have considered the OEMs’ optimal decision making, which selects a
suite of technologies and formulates a portfolio of models to satisfy
environmental regulations as a combinatorial problem. Likewise, even
fewer studies solved it using heuristic algorithms [33,34]. The in-
tegrated model consisting of vehicle engineering performance, manu-
facturer profits, regulatory penalty and market demand was developed
to investigate the vehicle optimal design and conduct policy analysis.
Moreover, game theory was utilized with a sequential iterative method
to optimize the objective function, which was so computationally in-
tensive that the producer was limited to a maximum of 2 [35]. Al-
though a multi-stage approach was proposed to solve this model more
efficiently, heuristic algorithms were not employed [36]. There was
another integrated model incorporating product pricing, production
plan and inventory, market demand and regulation constraints. For this
integrated model, the mix-integrated programming method was utilized
to make strategic assortment plans for OEMs [37]. To maximize the
overall measurement of value in the early design stages, Mavris and
Kirby proposed a nine-step technology identification, evaluation and
selection (TIES) method. In the steps of technology evaluation and se-
lection, GA was employed to acquire the optimal portfolio of alternative
technologies [38]. Since long development procedures are required for
both aircrafts and vehicles, most of the TIES methods could be

employed in the decision-makings of OEMs’ vehicle technology com-
bination (TC) design. Montalbo et al. identified a light-weighting TC
strategy to optimize net present value in a time horizon of three years
for three vehicle models respectively. In this strategy, the best solution
was searched in numerous available materials and manufacturing
processes by implementing GA [39].

Therefore, the existing studies from the perspective of OEMs have
seldom considered complying with FCR standards by choosing a port-
folio of fuel-efficient technologies for each vehicle as a combinational
optimization problem. Besides, fewer studies have solved this problem
with elaborately designed heuristic algorithms. In general, studies fo-
cused on one category of fuel-efficient technologies instead of devising
a decision-making method with regard to different categories of tech-
nologies extensively. Most importantly, to the best of our knowledge,
no study has conducted complexity analyses of relevant problems.
Substantially, this critical shortfall might result in exaggerating the
difficulty of the problem and overdoing the problem with excessively
designed algorithms. With the aim of filling such gaps, the contribution
of this paper lies in three aspects. Firstly, the mathematical model of the
TC problem is constructed and the complexity analysis is conducted in
this study. Secondly, an efficient and reliable algorithm is elaborated to
solve this problem. Thirdly, results of technology strategy from both the
OEM commonly used greedy algorithm and the designed GA are com-
pared, which considers the fuel-efficient technologies extensively.

The whole paper is organized as follows. In the next session, the TC
mathematical model is presented with a complexity analysis conducted
by restricting the decision problem of TC to the decision problem of 0/1
knapsack problem. Subsequently, a GA is developed and the effective-
ness of the GA is examined by solving a selected case. Next, the per-
formance of the designed GA is compared with the TC decision-making
method that is commonly used by OEMs in China. The final section
draws conclusions based on the entire study.

3. Technology combination problem

In this study, TC problem is defined as selecting the technologies to
be implemented on an OEM’s vehicle product assortment that can op-
timize the OEM’s targets subject to the constraints of FCR standards,
greenhouse gas emissions standards, air pollutants standards, etc. The
application of TC is not restricted to automotive industry. The appli-
cation could be extended to other manufacturing sectors where nu-
merous parameter-related technologies are available for selection and
several compulsory requirements should be satisfied. Under the CAFC
standards in China, the technologies for selection and combination are
fuel efficiency related. In current standards of Phase III and the newly
enacted Phase IV, there is no violating penalty provision. The target for
most OEMs is to meet the standards while minimizing the technology
incremental cost. In this section, TC mathematical model is formulated
and complexity analysis is conducted.

3.1. Technology combination problem framework description

Assume an OEM with n vehicle models in the market as well as m
feasible fuel-efficient technologies, with the parameters defined in
Table 2. The connections among those parameters in the decision
making process of OEMs are illustrated in Fig. 2.

The objective is to minimize the technology incremental cost
without violating the standards. The framework for TC is formulated as

∑ ∑ −∼
= =

s x x cmin ( )
j

n

j
i

m

ij ij i
1 1 (1)

subject to:

(1) CAFC constraint
(2) FCR limit
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(3) Technology compatibility

The constraints stated in Eq. (1) are described as follows:

(1) CAFC target constraint: Under China’s fuel economy standards, an
OEM’s CAFC should meet the CAFC target. The constraint is de-
scribed in Eq. (2).
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(2) FCR limit, which determines the entry of domestic vehicle market.
Vehicle models violating this constraint could not acquire the li-
cense to sell in China. The constraint is described in Eq. (3).

⩽f StL m( )j j (3)

(3) Technology compatibility, which means that some technologies
could not be implemented concurrently. It is determined by the
physical features of fuel-efficient technologies and could be divided
into four classes:
(a) Overlapping effect. When several technologies following the

same fuel-efficient principle or acting on almost the same part
of a vehicle’s energy flow are applied together, the effects are
extremely overlapped by each other and even less than the
impact of the individual technologies [38,40,41]. Therefore, it
is not cost-effective to apply HEV technology with any of them
together. For example, one main fuel saving principle of HEV is
that the internal combustion engine (ICE) could be shut down
when the vehicle is stopped or decelerating so that the ICE is
adjusted into more economical map zones when it is operating
at low load, which is the fuel-efficient principle of engine tur-
bocharging, engine downsizing and cylinder deactivation as
well. For two overlapping effect technologies that are available
to model j, the constraint is described in Eq. (4).

+ ⩽ ∈x x α β1, ,αj βj  (4)

Table 2
Parameter notations and descriptions.

Notation Description

∈ = …i m{1,2, , } Set of all available fuel-efficient technologies for the OEM
∈ = …j n{1,2, , } Set of all vehicle models of the OEM

StL m( )j The step function defined by the standards to determine the FCR limits

StT m( )j The step function defined by the standards to determine the FCR targets

= …c c cC [ , , ]m1 2 ci is the cost of technology i
= …e e eE [ , , ]m1 2 ei is the FCR reduction effect of technology i, ⩽ ⩽e0 1i

= …f f fF [ , , ]n1 2 f j is the FCR of model j after technology implementation

= …l l lL [ , , ]n1 2 lj is the FCR limit of model j after technology implementation

= m m mM [ , ,... ]n1 2 mj is the curb weight of model j after technology implementation

= …s s sS [ , , ]n1 2 sj is the projected sales of model j after technology implementation

= …t t tT [ , , ]n1 2 tj is the FCR target of model j after technology implementation

= …w w wW [ , , ]n1 2 wj is the CAFC calculation weighta of model j after technology implementation

= …v v vV [ , , ]m1 2 vi is the impact on curb weight after implementing i, ⩽ ⩽v0 1i

=X x x x[ , ,..., ]1 2 n xj is the decision variable column vector of model j with m elements, ∈x {0,1}ij is the final state of technology implementation
∼F, ∼L, ∼M, ̃S , ∼T, ∼W The corresponding parameters before technology implementation

= ∼ ∼ ∼∼X x x x[ , ,..., ]1 2 n The initial technology implementation condition, ∈∼x {0,1}ij

a According to the standards, when a vehicle model’s powertrain configuration is battery electric vehicle (BEV), fuel cell vehicle (FCV) or plug-in hybrid electric vehicle (PHEV) and
several criterion are met, “super weight” is adopted to calculate the OEM’s CAFC. For example, the “super weight” of BEVs is 5, 3, 2 in year 2016 ∼ 2017, 2018 ∼ 2019, 2020,
respectively, while for traditional internal combustion engine (ICE) models, the weight is 1.

Fig. 2. The connections of parameters in TC.

S. Wang et al. Applied Energy 204 (2017) 544–559

547



(b) Same category. Technologies in the same category could not be
applied concurrently. For example, duel clutch transmission
(DCT) and continuous variable transmission (CVT) could not be
additionally equipped on one drivetrain. Let …{ }, ,c c cγ1 2   ,

∈ +γ N be the set of subsets of , where each technology could
only be used exclusively among the subset. The constraint is
described in Eq. (5).

∑ ⩽ ⩽ ⩽ ∈
∈

+x σ γ σ N1, 1 ,
i

ij
cσ (5)

(c) Incompatible powertrains. Technologies which are applicable
exclusively to one type of powertrain could not be implemented
on other powertrains. For example, gasoline direct injection
(GDI) could not be applied to diesel or battery electric vehicle
(BEV) powertrains. Let …{ }, ,p p pη1 2   , ∈ +η N be the set of
subsets of  that contain technologies applicable exclusively to
individual powertrains. The constraint is described in Eq. (6).

∑ ∑ = ⩽ < ⩽ ∈
∈ ∈

+x x μ ν η μ ν N0, 1 , ,
i

ij
i

ij

μ pνp  (6)

(d) Preferential FCR targets. Under China’s Phase IV CAFC stan-
dards, FCR of FCVs and BEVs are counted as zero [12]. There-
fore, in terms of complying with the standards, it is not cost-
effective to implement other technologies when BEV power-
train has been applied to one model. Let FCV and BEV be the
subsets of , which contain FCV technologies and BEV tech-
nologies respectively. The constraint is described in Eq. (7).

∑ ∑ =
∈ ∪ ∉ ∪

x x 0
i

ij
i

ij
FCV BEV FCV BEV    (7)

Partial discrete approximation is an approach most widely used to
estimating the synergistic impact of technologies on reducing FCR. In
order to avoid overestimating FCR benefits of technological synergistic
impact, different approximation methods of PDA are employed under
different structures of standards [37,42]. Under the US CAFE standards,
the level of fuel economy is measured in mile per gallon (MPG). Let Δi

be the fuel economy benefit of technology ∈i j , where j is the set of
selected technologies to be applied to model j, and∼MPGj be the initial
fuel economy of model j. The cumulative fuel economy impact is cal-
culated as Eq. (8). While under the China’s CAFC standards, liter per
100 km (L/100 km) is used to measure the FCR. Let δi be the FCR re-
duction effect of technology, and the corresponding impact is calcu-
lated as Eq. (9), which is used in this study.

∑= +∼

∈

MPG MPG (1 Δ )j j
i

i
j (8)

∏= −∼

∈

f f δ(1 )j j
i

i
j (9)

In addition to reducing the chances of overestimating the FCR
benefits, another intention of using the two methods above is to esti-
mate the interactions among technologies, which have been accounted
for in the Δi and δi terms [42]. After excluding the concurrent im-
plementation of technologies with considerable overlapping effects, the
interactions among technologies have been notably decoupled by the
technology compatibility constraints. Therefore, the method in Eq. (10)
is suitable as well, which will be used to conduct complexity analysis of
TC below.

∑= −∼

∈

f f δ(1 )j j
i

i
j (10)

When applied to one model, the technology’s physical weight affects
the model’s curb weight mj, additionally affects the curb weight based
parameters, the FCR target =t StT m( )j j and FCR limit =l StL m( )j j . The
curb weight after technology implementation is calculated as Eq. (11).

∑= +∼
∈

m m v(1 )j j
i

i
j (11)

3.2. Complexity analysis

(1) Assumptions

In this model, the aim is to analyze the complexity of TC and design
a metaheuristic algorithm to solve TC, for which economical effects are
not taken into consideration. The projected sales is given and does not
vary after the implementation of technologies, and hence =∼S S.
Besides, the super weight effects specified by the CAFC standards are
disregarded. That is ≡ ∈w j1,j . As the FCR targets and limits are
determined by step functions of vehicle curb weights, TC could not be
described explicitly by using the decision variables. To analyze the
complexity of TC, an approximation is made that the FCR targets and
limits are determined by linear functions, as Eq. (12) shows.

⎧
⎨⎩

= +
= +

t k m k
l k m k
j t j t

j l j l

1 2

1 2 (12)

where, kt1, kt2, kl1 and kl2 are the coefficients in approximating the
FCR targets and limits.

(2) NP-hardness of TC

Consider the special case of TC where there is only one vehicle
model in the OEM’s assortment and no fuel-efficient technologies have
been implemented on the model. That is =∼x 0i . Let the available
technologies set of the OEM be τ , where each technology is compa-
tible with the others. Consequently, the combined FCR reduction could
be estimated by Eq. (10). The special case of TC could be written as Eq.
(13)
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(13)

As specified by the standards, the FCR target is more stringent than
the FCR limit for one model. The two constraints in Eq. (13) could be
simplified to one. Let +∼ ∼e f k v m( )i t i1 be di and − −∼ ∼f k m k( )t t1 2 be bf , the
decision problem of these instances is “given the incremental cost bc,
does a combination of technologies ∈ ∈x i{0,1},i τ exist so that the
constraints in Eq. (14) are satisfied?”

∑

∑

⎧

⎨
⎪

⎩
⎪

⩾

⩽
∈

∈

x d b

x c b
i

i i f

i
i i c

τ

τ



 (14)

Set the cost of the technologies =c b d b/i c i f . The constraints in Eq.
(14) are transformed into Eq. (15)

∑ =
∈

x c b
i

i i c
τ (15)

As the 0/1 knapsack decision problem is described as “given
…a a a a b( , , , , , )σ1 2 3 , does ∑ == x a bi

σ
i i1 , ∈x {0,1}i have a solution? ”, the

above decision problem of the restrictive special instance of TC is
equivalent to the well-known 0/1 knapsack decision problem, which
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has proven NP-complete [39]. As an optimization problem is NP-hard
when it has a version of decision problem which is NP-complete [43],
the result can be established that TC is NP-hard even when the problem
is basic and several simplifications are made. Therefore, TC is a NP-hard
problem. A further introduction of NP-hard problem and related ter-
minology is given in Appendix A.

4. Heuristic algorithm to solve technology combination problem

As proved in the previous section, TC is NP-hard, which indicates
that unless =P NP, it is unlikely to find an efficient polynomial algo-
rithm to solve it optimally. Moreover, in most instances, there are
dozens of feasible fuel-efficient technologies for OEMs. Even for the
intermediate volume OEMs in China, the assortments would consist of
over 10 vehicle models in general. Therefore, enumeration method
which requires significant computation is impractical for most OEMs. In
order to acquire the best solution at an acceptable computational cost
[35], the application of a heuristic algorithm to TC is necessary. GAs are
particularly suitable for complex optimization problems that could be
mapped into a set of strings [44]. Since the decision variables of TC are
binary, a GA is designed and implemented to solve TC. As a search
heuristic, GAs have proven quite effective in exploring the solution
domain and finding the optimum [45]. However, in the worst case for
an OEM where n fuel-efficient technologies are available without
technology incompatibilities and m vehicle models are included in the
assortment, the search space of possible solutions is over 2m·n, which
implies an intractable calculation amount. Since the “no free lunch”
theorem demonstrates that matching algorithms to specific problems
brings better performance [46,47], sufficient prior information of TC
should be acquired before developing a suitable GA to solve TC, which
includes the provisions of the standards, the feasible fuel-efficient
technologies and technology compatibilities among them.

4.1. Case selected and data input

In this study, an intermediate volume OEM in China is selected,
whose sales in 2015 is around 580,000 and assortment consists of 8
vehicle models containing 36 vehicle versions. The detailed vehicle
parameters are listed in Appendix B. Three determining parameters of
fuel efficient technologies that are most related to the compliance of the
regulation are selected, which is comprised of FCR reduction potentials,
direct manufacturing cost and effects on curb weight. The data of
technologies available before 2020 is adapted from fuel-efficient tech-
nology assessment reports. The estimations of FCR reduction potentials
relied on more than one method, including fundamental technical
analyses, literature reviews, full system simulation, vehicle test data,
data from automakers and suppliers, experts’ opinions and etc.
[42,48,49]. Since the FCR reduction potentials, costs and effects on
weight for different segments of vehicles are not identical, the data is
divided into 2 categories, one consists of the data for A and A0 segments
(generally defined as passenger vehicles with wheelbase of under
2.7 m), and another consists of the data for B and above segments
(wheelbase of above 2.7 m). 56 technologies classified into 4 categories
are selected in this case. As illustrated in Fig. 3, technologies are further
classified into sub-categories and the numbers in the brackets represent
the amounts of technologies in each category Technology in-
compatibilities are adapted from the several technology assessments
[42,48,50,51]. In addition, with respect to technology implementation
within vehicle versions and models, two assumptions are made based
on the real world OEM manufacturing and product positioning process.
First, vehicle versions under the same vehicle model should be im-
plemented with the same engine and vehicle technologies, for instance,
GDI, turbocharging, mass reduction, aerodynamics, etc. Second, ac-
cessory, transmission and HEV technologies could be used on vehicle
versions within the same vehicle model.

4.2. The design of genetic algorithm

(1) Coding and constraints

Considering the objective function of TC in Eq. (1), binary coding,
which is the most widely used conventional method in combinatorial
optimization problems, is suitable for the calculation process to solve
TC. However, binary coding would extend the search space of GAs
exponentially where most of the solutions might be infeasible on ac-
count of the constraints. This would degrade the algorithm performance
considerably. Several coding and constraint handling techniques are
applied to the proposed GA so that the search space would be effec-
tively reduced and the algorithm performance would be improved.

(a) Specialized solution structure. Constraints presented in the problem
could be hidden by specializing the solution structure [52]. In TC,
numerous technology compatibility constraints increase the diffi-
culty of hiding the constraints. Specializing the structure contains
four steps, after which all the technology compatibility constraints
are eliminated. Firstly, by employing a top-down method, tech-
nologies are divided into 4 categories The solution structure for
each vehicle version is encoded into a 4-digit integer structure.
Secondly, technologies in each category are subdivided into sub-
classes. The incompatibilities could be defined among subclasses.
Thirdly, compatible technologies are combined using a bottom-up
method, from the bottom tier to the four main categories. Domi-
nated combinations are eliminated and the dominating combina-
tions are ordered based on cost-effectiveness. As illustrated in
Fig. 4. Last, powertrain indicator matrix is established. For each
powertrain, the lower and upper bounds of the 4-digit integers are
defined, which eliminates the remaining constraints of overlapping
effect and preferential FCR targets as discussed above in Section 3.

(b) Decoders. An appropriate decoder could avoid the generation of
infeasible solutions [52,53]. In this case, vehicle versions and
models are implemented with some fuel efficient technologies in-
itially. Thus the incremental cost and fuel economy are more ap-
propriate while calculating the CAFC related constraints. Decoding
integers into binary structure makes the calculation process simple
and guarantees the feasibility of solutions.

(c) Penalty functions. Penalty functions provide a method of guiding
the search towards feasible solutions [53,54]. A proper penalty
factor would compromise between satisfying the constraints and
maintaining diversity of the GA population. As the objective func-
tion is to minimize the total cost, the penalty function is defined as
Eq. (16)
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where,TOC is the total incremental cost derived in Eq. (1); ×TCS j σj m,
is the technology compatibility constraints matrix of vehicle model j,
and σj is the total number of constraints; pcons1 and pcons2 are penalty
function factors, which are adaptive to the GA process. During the in-
itial generations, the relatively small factors are applied to guarantee
the diversity and avoid premature, and larger factors are set afterwards
to satisfy the constraints. ∈τ {0,1} is a constraint violation indicator.

=τ 1 when corresponding constraint is violated. Otherwise, =τ 0.
Death penalty [53] is applied when the technology compatibility con-
straints are not satisfied. The arbitrary penalty of infinity leads to an
extremely low fitness.

(2) Initialization
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Population initialization is a crucial task in evolutionary algorithms
because it can affect the search space, the convergence speed and also
the final solution [55]. To guarantee both the population diversity and
the convergence speed, the initial population is generated by two ap-
proaches. The major portion is generated with the prerequisite of sa-
tisfying all the constraints, other individuals are randomly initialized.

(3) Fitness evaluation and selection

As the objective is to minimize the total cost, the penalty function
value and the fitness of an individual is negatively correlated, which
indicates that a higher penalty represents a lower fitness to survive.
Thus the penalty is used to represent an “inverse” fitness. Roulette
approach is employed in the process of selection.

(4) Crossover and offspring generation

In the process of crossover, two parents are randomly selected to
produce two children. In order to avoid the generation of infeasible
solutions, powertrain indicator matrix, which records the type of one
powertrain (gasoline, diesel, HEV or BEV), is employed to eliminate the
infeasibilities while generating offspring. Meanwhile, the elitists that

have been recorded in the previous step are transmitted directly into
the next generation so that a non-negative evolution process is guar-
anteed.

(5) Mutation

By using the adaptive mutation method, the twin goals of sustaining
the capacity of convergence and maintaining the diversity in the po-
pulation could both be realized [56]. The algorithm stops when the
defined number of evolution generation is achieved. The process of the
designed GA is illustrated in Fig. 5.

5. Results and discussion

5.1. Simulation results

The GA described above is coded into MATLAB programs and em-
ployed in the selected case. As the encoded solution structure contains
144 bits, a sufficient large population size is set to be 20,000. Moreover,
the factors of penalty function are tuned in the initial simulations so
that feasible solutions could be acquired while maintaining the popu-
lation diversity. Numerous simulations are conducted to determine the

Fig. 3. Selected fuel-efficient technologies.

Fig. 4. The comparing matrix of two TCs.
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technical parameters in the algorithm, as presented in Table 3. Dozens
of simulations are conducted and the repeatability of the proposed GA
is confirmed. The coefficient of variation of the optimizing objective
and the fuel saving contributions from different technology categories
are selected to measure the repeatability. The coefficient of variation of
the average incremental cost is 0.16%, while the largest coefficient of
variation of the fuel saving contributions is 1.9%. For this selected case,
the overall running time is around 4 h on an ordinary computer.

The population converges to a feasible solution without violating
any constraint constantly. Thus the penalty function value represents
the overall fuel-efficient technology implementation cost. Typical con-
vergence history result is shown in Fig. 6. Each red cross1 stands for the
mean penalty function value in each generation, with the blue dot re-
presenting the minimum penalty function value. The gap between the
two values indicates the diversity of each generation. When the two
points coincide, the population becomes homogenous eventually. It is
obvious that during the evolutionary process, the best technology im-
plementation cost declines generation by generation, and the gap be-
tween the mean and minimum penalty function values narrows. The
population becomes increasingly uniform and converges completely
when the optimal TC solution is acquired.

5.2. Comparative analysis between genetic algorithm and the greedy method

To understand how OEMs in China make fuel-efficient TCs to satisfy
the standards, several directors of domestic OEMs’ technology centers
are interviewed. It is found that the method used by OEMs to select
technology portfolios for each vehicle model is quite comparable to
greedy algorithms, both of which are “quick and dirty” methods. Since
greedy algorithms only search a local optimal choice in each step, they
could yield solutions for problems with high computational complexity
in a reasonable time. For example, in knapsack problem, a greedy al-
gorithm is to put the most valuable item of each step into the “sack”
until the remaining space of the “sack” is not sufficient for any of the
remaining items. Greedy algorithms could not get a global optimal
solution mostly and may even get the worst solution in some extreme

Fig. 5. The iteration process of the designed GA.

Table 3
Technical parameters of the designed GA in this case study.

Parameters Notation Value

Population size Np 20000
Elitists ratio RE 0.0001
Penalty function factor 1 pcons1 1010

Penalty function factor 2 pcons2 108

Stopping generation number GN 50

1 For interpretation of color in Fig. 6, the reader is referred to the web version of this
article.
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cases.
According to the interview result, a “greedy” algorithm is developed

based on the OEMs’ decision making process. As illustrated in Fig. 7, an
OEM firstly assesses the cost and FCR reduction effect of its reserving
fuel-efficient technologies, and lists the available TCs for each vehicle
model. Then the listed combinations are sorted by cost-effectiveness,
which is defined in Eq. (17)
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where, CEk is the cost-effectiveness of TC k. ci and ei, as defined pre-
viously, are the cost and FCR reduction effect of technology i. Subse-
quently, for a vehicle model which does not meet the specified FCR
target initially, the TCs are implemented in the cost-effectiveness se-
quence until the FCR target is satisfied. Several technology im-
plementation states are recorded around the point where one vehicle
model exactly satisfies FCR target. By enumerating all possible combi-
nations across the fleet, one solution that both satisfies all constraints
and costs the least is selected, which is the determined TC strategy
based on the greedy algorithm. To conduct a comparative analysis, the
identical case described above is solved by the “greedy” algorithm. The
results are compared and analyzed as follows.

(1) Fleet-wide compliance parameters

The fleet-wide regulation compliance parameters are illustrated in
Fig. 8. Both the two methods provide the strategies of technology im-
plementation that fully satisfy the standards constraints. However, under
the greedy method, the average incremental cost of complying with CAFC
standards is ¥8650 per vehicle, which is 16.4% higher than that under GA.
As to the vehicle parameters, 31 out of 36 vehicle versions’ curb weight
increases, leading to the increase of 19 versions’ FCR target, which ac-
counts for 50.3% of the total production. While under greedy algorithm,
only 12 vehicle versions’ curb weight increases, which accounts for the
FCR target increase of 9.7% of the overall vehicle production. The fleet
average curb weight under GA is 1352.2kg, 5.5% higher than that under
greedy method. Since FCR target is curb weight based in China, a higher
average curb weight means a lower CAFC target under GA, as shown in
Fig. 8. The detailed vehicle parameters under both GA and greedy
methods are presented in Appendix C.

Fig. 6. The designed GA convergence history for TC optimization.

Fig. 7. The “greedy” decision making process.
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(2) Fuel consumption rate gap and incremental cost distribution

Figs. 9 and 10 illustrate the histogram of FCR gaps and incremental
costs of vehicle models. In comparison with GA, the main drawback of
greedy method is that the solution searching domain is significantly
reduced. And each vehicle model could only be implemented with TCs
around the point exactly satisfies the standards. This brings two con-
sequences. One is vehicle models are featureless in terms of fuel
economy. The FCR of each vehicle model would be around the weight-
based FCR target. Since FCR is positively correlated to power and other
performance, homogenous vehicles in FCR also results in less diversity
of an OEM’s the product portfolio in terms of other vehicle attributes.
As illustrated in Fig. 9, vehicles’ FCR to FCR target under GA is more
dispersed than that under greedy method.

Another consequence of this drawback is higher average cost.
Reduced searching domain means reduced tolerance of FCR target.

Vehicle models have to be made within the specific FCR tolerance
which is in fact not compulsory under China’s standards. For a model
with a wide FCR to FCR target gap, fuel-efficient technologies could be
over used to fill it, while this gap could be largely made up by models
initially with better FCRs under GA. This consequently brings a higher
average cost. As the histogram shows in Fig. 10, the cost distribution
under greedy method is more dispersed. The high percentages in
(16,000, 18000] and (20,000,+∞) categories are directly caused by
the models with larger FCR to FCR gaps initially.

(3) Compliance contributions and implementation rates of tech-
nologies

In order to understand the difference of technology strategies under
both methods, fuel efficient technologies are divided into 7 categories.
The compliance contributions of different technology categories are

Fig. 8. Result comparison of GA and greedy method.

Fig. 9. Histogram of FCR to FCR target gap.

Fig. 10. Histogram of technology incremental cost.
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presented in Fig. 11. Note that the negative contributions of technolo-
gies are results of removing the existing fuel-efficient technologies. As
shown in Fig. 11, the existing HEV and mass reduction technologies are
mostly removed under GA, which leads to a total −5% compliance
contribution. Both strategy rely mainly on convention engine and dri-
vetrain technologies to satisfy the 2020 CAFC regulation. The con-
tribution of engine and transmission technology account for 75% and
64% over GA and greedy method, respectively. However, there are
notable differences in technology categories of mass reduction, HEV
and engine technologies. Fig. 12 illustrates the technology im-
plementation rates, which give some insight into the detailed tech-
nology strategies. Despite the high implementation rate of conventional
engine technologies, under both strategies, rolling resistance reduction,
aerodynamics technologies and accessory technologies are highly va-
lued as well. Nevertheless, all vehicle models use various levels of mass
reduction technologies under greedy method, while the corresponding
proportion under GA is 9.3%. Mass reduction contributes to FCR re-
duction on one hand. Meanwhile, it also reduces the curb weight and
offsets the contribution itself by decreasing the weight-based FCR target
on the other hand. As shown in Eq. (17), mass effects of technologies
are not considered under greedy method. This results in the over-
estimation of the priorities of mass reduction technologies. HEV tech-
nologies are inferior to most engine technologies in terms of cost-ef-
fectiveness. Nevertheless, for a vehicle model with a wider FCR to FCR
target gap initially, HEV technologies have to be used to keep the FCR
close to FCR target under greedy method. As shown in Fig. 12, 2.3%
vehicles use strong HEV technologies under greedy method.

In practical decision making situations, there are still some reasons
for OEMs to use the greedy method. Firstly, although an OEM should
produce both typically powerful and fuel-efficient vehicle models in its
whole product portfolio, it should also guarantee that neither the per-
formance nor fuel economy of each vehicle model is unsatisfactory. The
greedy method could improve the fuel economy of all vehicle models to
appropriate levels (around the FCR targets) so that no large gap of fuel
economy among the models exists. Secondly, technology research and
development has always been a critical shortfall for China’s automotive

industry, especially for China’s national OEMs. Thus relatively few fuel-
efficient technologies are available for these OEMs, which makes the
greedy method seemingly sufficient to make TC strategies. Finally,
considering the stringency of the previous phase standards, OEMs could
effortlessly comply with the standards by simply making some adjust-
ments or adding one or two fuel-efficient technologies in one or two
years, in which situation the cost-effectiveness based greedy method is
a simple but efficient choice.

6. Conclusions

Confronted with the annually strengthening vehicle fuel economy
regulations in major vehicle markets around the world, automakers
have great difficulty searching for optimal technological strategies for
their vehicle product assortments. This paper examines a promising
heuristic method for technological strategy making by selecting the
largest vehicle market China and its current phase fuel economy reg-
ulation as a case. Several contributions are made and the results also
provide valuable information for both the automakers and policy ma-
kers.

Firstly, the mathematical model of TC is established, where physical
weight of technology, effects of FCR reduction, incremental cost and
most standards scheme parameters are adequately considered. The
objective function should satisfy the constraints of fuel economy reg-
ulation, vehicle models’ FCR targets and incompatibilities among fuel-
efficient technologies. By employing the method of restriction, com-
plexity analysis can be performed. The decision problem of TC is
identical to the well-known 0/1 knapsack decision problem. TC has
been proven to be NP-hard. In other words, it indicates that it is un-
likely to identify an efficient polynomial time algorithm to obtain op-
timal technological strategies. Therefore, automakers should consider
using heuristic algorithms for technological strategies making.

Secondly, a heuristic algorithm based on GA is elaborated to solve
TC. Simulation results demonstrate that this algorithm could obtain
results with fast convergence speed and good repeatability. To evaluate
the performance of GA, the strategy making result is compared to that

(a) GA (b) Greedy algorithm

Fig. 11. Compliance contributions of different technologies.
[Technology abbreviations in this figure. ACC, accessory
technologies. AERO, aerodynamic technologies. CVT, con-
tinuously variable transmission. DCT, .dual clutch transmis-
sion. EFR, engine friction reduction. ENG, internal combus-
tion engine technologies. EV, electric vehicle. GDI/T/D,
gasoline direct injection with turbocharging and engine
downsizing. HEV, hybrid electric vehicles. LDB, low drag
brakes. MR, mass reduction. PHEV, plug-in electric vehicle.
ROLL, rolling resistance reduction. TRAN, transmission tech-
nologies. VT, valvetrain technologies.].

Fig. 12. The implementation rate of fuel efficient technologies.
[Technology abbreviations in this figure. ACC, accessory technolo-
gies. AERO, aerodynamic technologies. CVT, continuously variable
transmission. DCT, .dual clutch transmission. EFR, engine friction
reduction. ENG, internal combustion engine technologies. EV, elec-
tric vehicle. GDI/T/D, gasoline direct injection with turbocharging
and engine downsizing. HEV, hybrid electric vehicles. LDB, low drag
brakes. MR, mass reduction. PHEV, plug-in electric vehicle. ROLL,
rolling resistance reduction. TRAN, transmission technologies. VT,
valvetrain technologies.].
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of the commonly used greedy method. In particular, GA can outperform
greedy method in terms of the overall technology incremental cost,
which can be reduced by 14.1%. Therefore, the overall cost can be
effectively reduced by using heuristic algorithms for technological
strategies making. The technological strategy details are also compared.
Results show that the greedy method may overvalue the cost-effec-
tiveness of mass reduction and HEV technologies. From the perspective
of automakers, therefore, lower priorities should be given on these
technologies in terms of complying with the regulation.

Thirdly, the comparison results also provide some insight into the
technological strategy for regulation compliance. Both methods rely
mainly on conventional engine and drivetrain technologies to satisfy
regulation by 2020, which account for 75% and 64% of the CAFC re-
duction. Besides these technologies, rolling resistance reduction, aero-
dynamics technologies and high efficiency accessory technologies are
also high priorities for current phase regulation compliance.

However, making technological strategy optimally by using GA
leads to a higher fleet average curb weight and in turn a higher CAFC
target for weight-based fuel economy regulation structures. Therefore,
automakers’ optimization of the compliance cost would have negative
effects on the penetration of mass reduction technologies from the
perspective of policy makers. As a result, the national energy saving

potential would be further diminished. Further modification is needed
to make the regulation structure more neutral to mass reduction tech-
nologies.

In future studies, it would be interesting to extend the scope of the
model to multiple periods and multiple OEMs, which should be a better
approach to the real market. Game theory, demand and supply theory
as well as utility functions could all be appropriately applied. By con-
sidering the future updating of fuel economy regulation, this model
could also be used for conducting scenario analysis, which can evaluate
the impacts of different schemes. For example, the proposed violation
fine, the fuel economy credits system, the carry-over and deficit
schemes of credits can be applied to fuel-efficient technologies.
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Appendix A. Definitions of P, NP, NP-Complete and NP-hard problems[57]

(1) P problem. Given an optimization problem, if there exists an algorithm A for the optimal solution, a polynomial function g x( ), and a constant
α, such that Eq. (A.1) holds for all instances of the problem, then the given problem can be solved in polynomial amount of computation time, or
polynomial problem. The set of all polynomial problems is P.

⩽C I αg l I( ) ( ( ))A (A.1)

I is an instance. l I( ) is the size of the instance. C I( )A is the computation time for solving instance I .
(2) NP problem. Given a decision problem, if there exists a polynomial function g x( ) and a verifier B such that I is a “yes” instance of the decision

problem if and only if the following two conditions are satisfied:

(1) there exists a solution string S whose size =l S O g l I( ) ( ( ( )))
(2) the verifier B can verify S as a “yes” instance of I in a computation time of O g l I( ( ( )))

Then this decision problem is Non-deterministic polynomial, or NP problem. ⊆P NP.

(3) NP-Complete. Given a decision problem C if ⊆C NP and any NP problem can be transformed into C , then C is called NP-Complete, or NPC. The
set of NPC problem is NPC.

(4) NP-hard. Given a decision problem C if any NP problem can be transformed into C , then C is called NP-hard, or NPH. ⊆NPC NPH
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Appendix B. Vehicle parameters in this selected case

The vehicle parameters are listed in Table B.1. Some parameters are used to determine the technology implementation baseline and the
availability of each fuel efficient technologies. For example, the V6 indicator is used to determine the engine downsizing potential and cost, and the
transmission type is used to determine the transmission technology baseline. Some parameters are used to determine the regulation related para-
meters. For example, AWD, TRS and AT are binary indicators to determine FCR target and limit for each vehicle version.

Table B.1
Technical parameters of the vehicle models and versions.

Model Version Transmission Displacement (L) Wheelbase (mm) Engine power (kW) Curb weight (kg) FCR (L/100 km) DOHC SOHC V6 AWD TRS AT

Model 1 V1.1 5MT 1.5 2530 96 1058 5.7 1 0 0 0 0 0
V1.2 CVT 1.5 2530 96 1078 5.3 1 0 0 0 0 1
V1.3 CVT 1.5 2530 96 1084 5.3 1 0 0 0 0 1
V1.4 CVT 1.5 2530 96 1105 5.5 1 0 0 0 0 1
V1.5 CVT 1.5 2530 96 1116 5.4 1 0 0 0 0 1

Model 2 V2.1 5MT 1.5 2600 96 1078 5.6 1 0 0 0 0 0
V2.2 5MT 1.5 2600 96 1099 5.7 1 0 0 0 0 0
V2.3 5MT 1.5 2600 96 1114 5.8 1 0 0 0 0 0
V2.4 CVT 1.5 2600 96 1094 5.4 1 0 0 0 0 1
V2.5 CVT 1.5 2600 96 1117 5.4 1 0 0 0 0 1
V2.6 CVT 1.5 2600 96 1136 5.4 1 0 0 0 0 1

Model 3 V3.1 5AT 2.4 2795 145 1715 9.1 1 0 0 0 0 1
V3.2 6AT 3 2795 193 1870 9.9 1 0 1 0 0 1

Model 4 V4.1 5MT 1.8 2650 102 1240 6.5 0 1 0 0 0 0
V4.2 5MT 1.8 2650 102 1265 6.5 0 1 0 0 0 0
V4.3 5AT 1.8 2650 102 1275 6.7 0 1 0 0 0 1
V4.4 5AT 1.8 2650 102 1300 6.7 0 1 0 0 0 1
V4.5 5AT 1.8 2650 102 1310 6.7 0 1 0 0 0 1

Model 5 V5.1 CVT 2 2775 114 1495 7.6 0 1 0 0 0 1
V5.2 CVT 2 2775 114 1510 7.6 0 1 0 0 0 1
V5.3 CVT 2 2775 114 1520 7.6 0 1 0 0 0 1
V5.4 CVT 2.4 2775 137 1545 7.7 1 0 0 0 0 1
V5.5 CVT 2.4 2775 137 1555 7.7 1 0 0 0 0 1
V5.6 6AT 3 2775 192 1660 8.8 0 1 1 0 0 1

Model 6 V6.1 CVT 2.4 2900 137 1775 7.8 1 0 0 0 1 1
V6.2 CVT 2.4 2900 137 1815 7.8 1 0 0 0 1 1
V6.3 CVT 2.4 2900 137 1839 7.8 1 0 0 0 1 1
V6.4 CVT 2.4 2900 137 1861 7.8 1 0 0 0 1 1

Model 7 V7.1 5AT 1.3 2450 60 1016 6.1 0 1 0 0 0 0
V7.2 5MT 1.3 2450 60 1056 6.9 0 1 0 0 0 1

Model 8 V8.1 6MT 1.5 2610 96 1200 6.2 1 0 0 0 0 0
V8.2 CVT 1.5 2610 96 1204 5.9 1 0 0 0 0 1
V8.3 6MT 1.8 2610 100 1248 7 0 1 0 0 0 0
V8.4 CVT 1.8 2610 100 1256 6.7 0 1 0 0 0 1
V8.5 CVT 1.8 2610 100 1302 6.5 0 1 0 0 0 1
V8.6 CVT 1.8 2610 100 1390 7.1 0 1 0 1 0 1
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Table C.1
Vehicle parameter variance under GAModel.

Version Incremental Cost
(¥)

FCR target (L/
100 km)

FCR limit (L/
100 km)

FCR (L/
100 km)

Curb weight
(kg)

Curb weight due to mass
reduction (kg)

Curb weight due to other
technologies (kg)

Model 1 V1.1 5538.4 0.0 0.0 −1.0 −1.2 26.5 −27.6
V1.2 4311.1 0.2 0.4 −0.8 20.1 27.0 −6.8
V1.3 4311.1 0.2 0.4 −0.8 20.2 27.1 −6.9
V1.4 4311.1 0.0 0.0 −0.9 20.6 27.6 −7.0
V1.5 1397.9 0.0 0.0 −0.8 15.1 27.9 −12.8

Model 2 V2.1 2576.5 0.2 0.4 −1.2 36.9 0.0 36.9
V2.2 2576.5 0.0 0.0 −1.3 37.6 0.0 37.6
V2.3 3803.8 0.0 0.0 −1.4 15.3 0.0 15.3
V2.4 1622.4 0.0 0.0 −0.8 4.3 0.0 4.3
V2.5 1622.4 0.0 0.0 −0.8 4.4 0.0 4.4
V2.6 −63.4 0.0 0.0 −0.8 −23.7 0.0 −23.7

Model 3 V3.1 12865.3 0.2 0.4 −2.9 55.3 42.9 12.4
V3.2 10474.2 0.3 0.4 −3.1 41.4 46.8 −5.4

Model 4 V4.1 9391.0 0.0 0.0 −1.8 36.2 31.0 5.2
V4.2 8163.7 0.2 0.4 −1.7 62.7 31.6 31.1
V4.3 7714.7 0.2 0.4 −1.6 63.2 31.9 31.3
V4.4 8942.0 0.2 0.4 −1.7 37.9 32.5 5.4
V4.5 8942.0 0.2 0.4 −1.7 38.2 32.8 5.5

Model 5 V5.1 14275.3 0.2 0.4 −2.0 45.7 37.4 8.4
V5.2 10469.2 0.2 0.4 −1.7 31.2 37.8 −6.5
V5.3 10469.2 0.2 0.4 −1.7 31.4 38.0 −6.6
V5.4 10232.6 0.0 0.0 −2.0 1.3 38.6 −37.3
V5.5 10232.6 0.0 0.0 −2.0 1.3 38.9 −37.5
V5.6 7473.3 0.2 0.4 −2.2 26.7 41.5 −14.8

Model 6 V6.1 6092.2 0.0 0.0 −1.7 27.5 44.4 −16.9
V6.2 7319.5 0.0 0.0 −1.9 −7.6 45.4 −53.0
V6.3 9898.3 0.3 0.4 −2.0 46.6 46.0 0.6
V6.4 6092.2 0.3 0.4 −1.7 28.8 46.5 −17.7

Model 7 V7.1 5482.4 0.0 0.0 −1.4 13.9 0.0 13.9
V7.2 5504.2 0.2 0.4 −1.7 36.1 0.0 36.1

Model 8 V8.1 7595.3 0.2 0.4 −1.6 22.9 30.0 −7.1
V8.2 5745.7 0.2 0.4 −1.2 22.5 30.1 −7.6
V8.3 4379.6 0.0 0.0 −1.5 16.3 31.2 −14.9
V8.4 3757.3 0.0 0.0 −1.2 −9.0 31.4 −40.4
V8.5 6336.1 0.2 0.4 −1.3 29.1 32.6 −3.4
V8.6 4674.7 0.0 0.0 −1.4 −9.9 34.8 −44.7

Appendix C. Vehicle parameters after optimization

(See Tables C.1 and C.2).
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Vehicle parameter variance under greedy algorithm.

Model Version Incremental Cost
(¥)

FCR target (L/
100 km)

FCR limit (L/
100 km)

FCR (L/
100 km)

Curb weight
(kg)

Curb weight due to mass
reduction (kg)

Curb weight due to other
technologies (kg)

Model 1 V1.1 4418.4 0.0 0.0 −0.9 −6.4 0.0 −6.4
V1.2 4418.4 0.0 0.0 −0.9 −6.5 0.0 −6.5
V1.3 4418.4 0.0 0.0 −0.9 −6.6 0.0 −6.6
V1.4 4418.4 0.0 0.0 −0.9 −6.7 0.0 −6.7
V1.5 1505.3 0.0 0.0 −0.8 −12.4 0.0 −12.4

Model 2 V2.1 2078.7 0.2 0.4 −1.2 36.9 0.0 36.9
V2.2 2078.7 0.0 0.0 −1.2 37.6 0.0 37.6
V2.3 2078.7 0.0 0.0 −1.2 38.1 0.0 38.1
V2.4 1124.7 0.0 0.0 −0.7 4.3 0.0 4.3
V2.5 1124.7 0.0 0.0 −0.7 4.4 0.0 4.4
V2.6 −1788.5 0.0 0.0 −0.6 −1.3 0.0 −1.3

Model 3 V3.1 28509.4 0.5 0.8 −3.9 191.7 0.0 191.7
V3.2 33423.2 0.5 0.8 −4.3 188.7 0.0 188.7

Model 4 V4.1 8075.8 0.0 0.0 −1.8 31.1 0.0 31.1
V4.2 8075.8 0.0 0.0 −1.8 31.8 0.0 31.8
V4.3 7626.9 0.0 0.0 −1.7 32.0 0.0 32.0
V4.4 7626.9 0.2 0.4 −1.7 32.6 0.0 32.6
V4.5 7626.9 0.2 0.4 −1.7 32.9 0.0 32.9

Model 5 V5.1 16112.6 −0.2 −0.4 −2.5 −145.2 −112.1 −33.1
V5.2 16112.6 −0.2 −0.4 −2.5 −146.7 −113.3 −33.4
V5.3 16112.6 −0.2 −0.4 −2.5 −147.6 −114.0 −33.6
V5.4 14346.2 −0.4 −0.8 −2.4 −151.5 −115.9 −35.6
V5.5 14346.2 −0.4 −0.8 −2.4 −152.4 −116.6 −35.8
V5.6 15919.9 −0.2 −0.4 −3.1 −130.9 −124.5 −6.4

Model 6 V6.1 10632.8 −0.4 −0.8 −2.3 −182.1 −133.1 −49.0
V6.2 10632.8 −0.4 −0.8 −2.3 −186.2 −136.1 −50.1
V6.3 10632.8 −0.4 −0.8 −2.3 −188.7 −137.9 −50.7
V6.4 10632.8 −0.2 −0.4 −2.3 −190.9 −139.6 −51.3

Model 7 V7.1 7678.2 0.0 0.0 −1.7 −11.0 −25.4 14.4
V7.2 8127.1 0.0 0.0 −2.1 −11.5 −26.4 14.9

Model 8 V8.1 7204.9 0.0 0.0 −1.5 −7.4 0.0 −7.4
V8.2 6582.6 0.0 0.0 −1.3 −31.1 0.0 −31.1
V8.3 4291.7 0.0 0.0 −1.6 −13.8 0.0 −13.8
V8.4 3669.5 0.0 0.0 −1.3 −38.6 0.0 −38.6
V8.5 3669.5 0.0 0.0 −1.3 −40.0 0.0 −40.0
V8.6 3669.5 0.0 0.0 −1.4 −42.8 0.0 −42.8
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